\(G^{1}_2\)
Structure constants and notation.
Root subalgebras / root subsystems.
sl(2)-subalgebras.
Semisimple subalgebras.

Page generated by the calculator project.
g: G^{1}_2. There are 6 table entries (= 4 larger than the Cartan subalgebra + the Cartan subalgebra + the full subalgebra).
Type k_{ss}: G^{1}_2
(Full subalgebra)
Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{1}_2

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{3}_1+A^{1}_1

Type C(k_{ss})_{ss}: 0
Type k_{ss}: A^{3}_1

Type C(k_{ss})_{ss}: A^{1}_1
Type k_{ss}: A^{1}_1

Type C(k_{ss})_{ss}: A^{3}_1
Type k_{ss}: 0
(Cartan subalgebra)
Type C(k_{ss})_{ss}: G^{1}_2

There are 4 parabolic, 2 pseudo-parabolic but not parabolic and 0 non pseudo-parabolic root subsystems.
The roots needed to generate the root subsystems are listed below.
["parabolic","0", []],
["parabolic","A^{1}_1", [[3, 2]]],
["parabolic","A^{3}_1", [[2, 1]]],
["parabolic","G^{1}_2", [[2, 1], [-3, -1]]],
["pseudoParabolicNonParabolic","A^{3}_1+A^{1}_1", [[2, 1], [0, 1]]],
["pseudoParabolicNonParabolic","A^{1}_2", [[3, 2], [0, -1]]]
LaTeX table with root subalgebra details.
\documentclass{article}
\usepackage{longtable, amssymb, lscape}
\begin{document}
Lie algebra type: $G^{1}_2$. There are 6 table entries (= 4 larger than the Cartan subalgebra + the Cartan subalgebra + the full subalgebra).
Let $\mathfrak g$ stand for the type of the regular subalgebra and $C(\mathfrak g)$ for the type of the centralizer. Let $r$ stand for the rank of $\mathfrak g$, let $r_c$ stand for the rank of the semisimple part of the centralizer, let $p$ stand for the number of positive roots of $\mathfrak g$, let $q$ stand for the number of positive roots of the centralizer, and let $m$ stand for the number of $A_1$ components (of all root lengths) of $\mathfrak g$. \begin{longtable}{cccccccc}
$\mathfrak g$ & $C(\mathfrak g)$& $p$ & $q$& $m$& $r$ & $c_r$ \\\endhead
$G^{1}_2$&$0$&$6$&$0$&$0$&$2$&$0$&\\
$A^{1}_2$&$0$&$3$&$0$&$0$&$2$&$0$&\\
$A^{3}_1+A^{1}_1$&$0$&$2$&$0$&$2$&$2$&$0$&\\
$A^{3}_1$&$A^{1}_1$&$1$&$1$&$1$&$1$&$1$&\\
$A^{1}_1$&$A^{3}_1$&$1$&$1$&$1$&$1$&$1$&\\
$0$&$G^{1}_2$&$0$&$6$&$0$&$0$&$2$&\\
\end{longtable}
\end{document}